
### Stratocumulus to Cumulus Transition CPT

### Chris Bretherton (UW) and Joao Teixeira (JPL)

**Goal**: Improve the representation of the cloudy boundary layer in NCEP GFS and NCAR CAM5 with a focus on the subtropical stratocumulus to cumulus (Sc-Cu) transition

Low-level clouds (%), ISCCP, ANN



NCEP H. Pan (PI), J. Han, R. Sun

NCAR S. Park (PI), C. Hannay

JPL J. Teixeira (CPT lead PI), M. Witek

U. Washington C. Bretherton (PI), J. Fletcher, P. Blossey

UCLA R. Mechoso (PI), H. Xiao

LLNL S. Klein (PI), P. Caldwell

NOAA funded Aug. 2010 - 2013 (additional internal JPL and DOE funds)

### **Motivations for CPT**

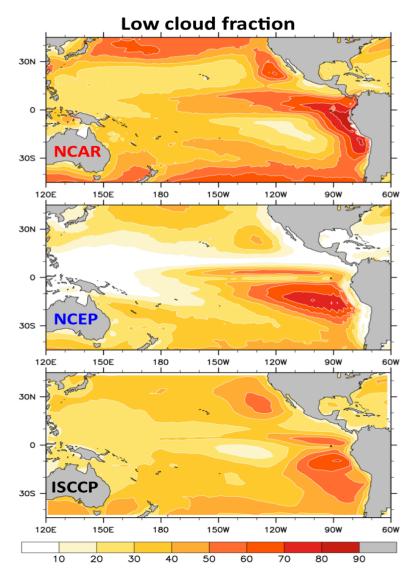
#### **NCEP**

- Vision: contribute to PBL and cloud physics development for a NOAA weather-seasonal-climate operational model
- Diagnose and improve clouds in operational GFS
- Evaluate free-running coupled GFS with climate model metrics
- Use single-column GFS as testbed for new parameterizations

#### **NCAR**

- CESM/CAM5 has new moist physics & aerosol
- Their interaction is inadequately understood and suboptimal

### **CPT Current Main Tasks**


- a) Better coupled/uncoupled climate diagnostics for GFS
- b) Study PBL cases with GFS SCM and LES models
- c) Evaluate physics modifications in short coupled GFS runs
- d) Development/testing of PDF cloud scheme in NCAR
- e) Development/testing of EDMF parameterization in NCEP

$$\overline{w'\varphi'} = -k \frac{\partial \overline{\varphi}}{\partial z} + M(\varphi_u - \overline{\varphi})$$

Siebesma & Teixeira, 2000

### **NCEP Model Diagnostics**

- NCAR CESM 1.0 (coupled version of CAM 5.0, 200-year run)
- NCEP CFS (coupled version of operational GFS, 50-year)
- Modified NCAR AMWG diagnostic package to add NCEP GFS output
- NCEP has TOA energy imbalance
- Both models reproduce global circulation patterns
- Both models have cloud biases



Xiao et al, UCLA

### 50 yr C-GFS vs. 100 yr CESM: AMWG metrics

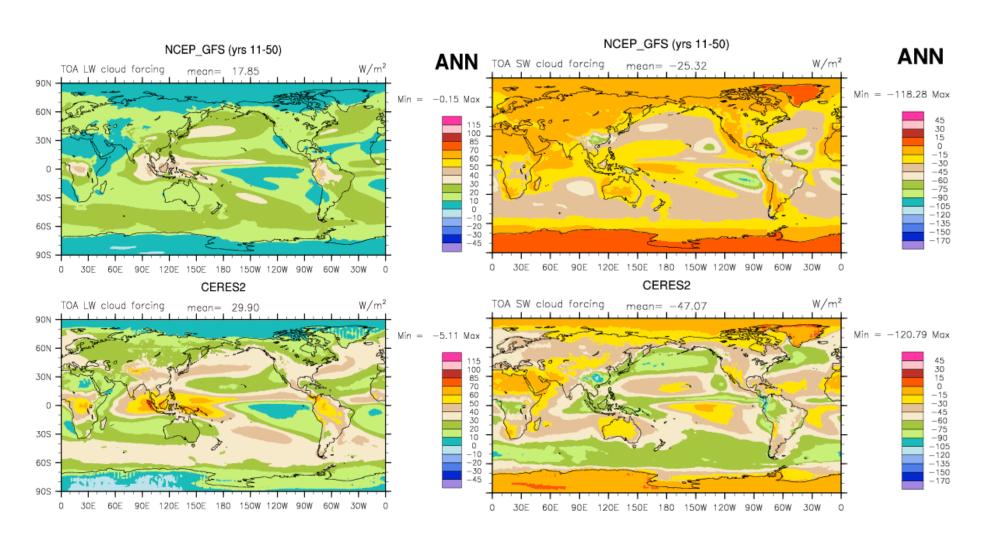
| cor coef: Space-Time               | b40_20th_c02c_76jpt | NCEP_GFS |
|------------------------------------|---------------------|----------|
| cor coer. opace-rime               | ANN                 | ANN      |
| Sea Level Pressure (ERA40)         | 0.959               | 0.956    |
| SW Cloud Forcing (CERES2)          | 0.714               | 0.408    |
| LW Cloud Forcing (CERES2)          | 0.769               | 0.781    |
| Land Rainfall (30N-30S, GPCP)      | 0.811               | 0.751    |
| Ocean Rainfall (30N-30S, GPCP)     | 0.757               | 0.733    |
| Land 2-m Temperature (Willmott)    | 0.876               | 0.911    |
| Pacific Surface Stress (5N-5S,ERS) | 0.797               | 0.834    |
| Zonal Wind (300mb, ERA40)          | 0.960               | 0.957    |
| Relative Humidity (ERA40)          | 0.874               | 0.906    |
| Temperature (ERA40)                | 0.932               | 0.984    |

### C-GFS pattern correlations better than CESM1 for:

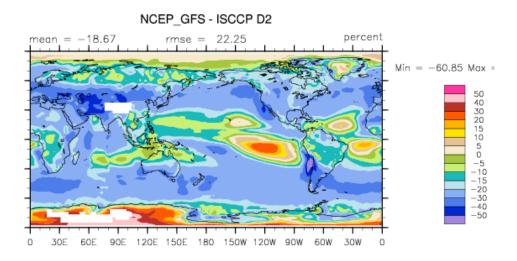
- Pacific surface stress
- Land surface temperature
- 3D T and RH

C-GFS climatology is remarkably good for a weather-tuned model

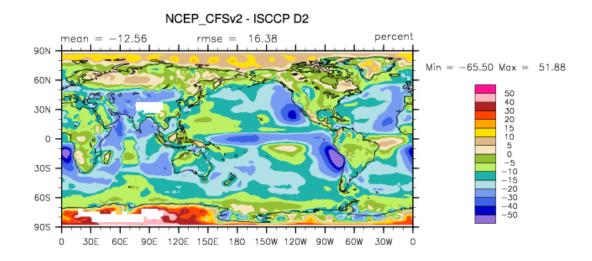
## GFS Problem Area 1: Global energy budget


| [W m <sup>-2</sup> ]      | GFS | CFS | NCAR | CERES2 |
|---------------------------|-----|-----|------|--------|
| TOA F <sub>net</sub>      | 9.0 | 7.4 | -0.2 | 0      |
| TOA-surf $\Delta F_{net}$ | 4.3 | 4.4 | 0.0  |        |
|                           |     |     |      |        |
| TOA SW <sub>net</sub>     | 259 | 253 | 238  | 240 7  |
| TOA SW <sub>clr</sub>     | 284 | 285 | 287  | 287    |
| SWCRF                     | -25 | -32 | -49  | -47    |
|                           |     |     |      |        |
| TOA LW <sub>net</sub>     | 250 | 246 | 238  | ر 240  |
| TOA LW <sub>clr</sub>     | 268 | 265 | 260  | 269    |
| LWCRF                     | 18  | 19  | 22   | 30     |

Two large compensating biases in GFS (and in CFS):

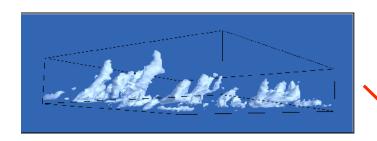

- Net spurious energy loss in atmosphere [and ocean?]
- SW, LW CRF 40-50% too low→10 W m<sup>-2</sup> too much net rad

### GFS problem area 2


Large low bias in GFS cloud radiative forcing: Regions of deep high cloud Subtrop. Sc too far offshore



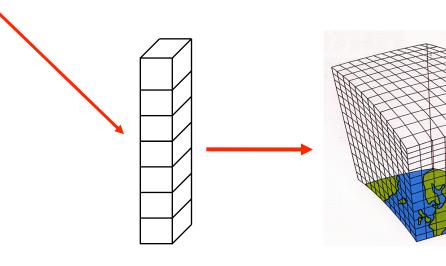
## Main culprit: Too little cloud cover in GFS




#### ....BUT also in CFS



Cloud Parameterization? Microphysics? Vertical mixing?


## Single-column testing and improvement of GFS



High-resolution model data:

Large Eddy Simulation (LES) models

Cloud Resolving Models (CRMs)



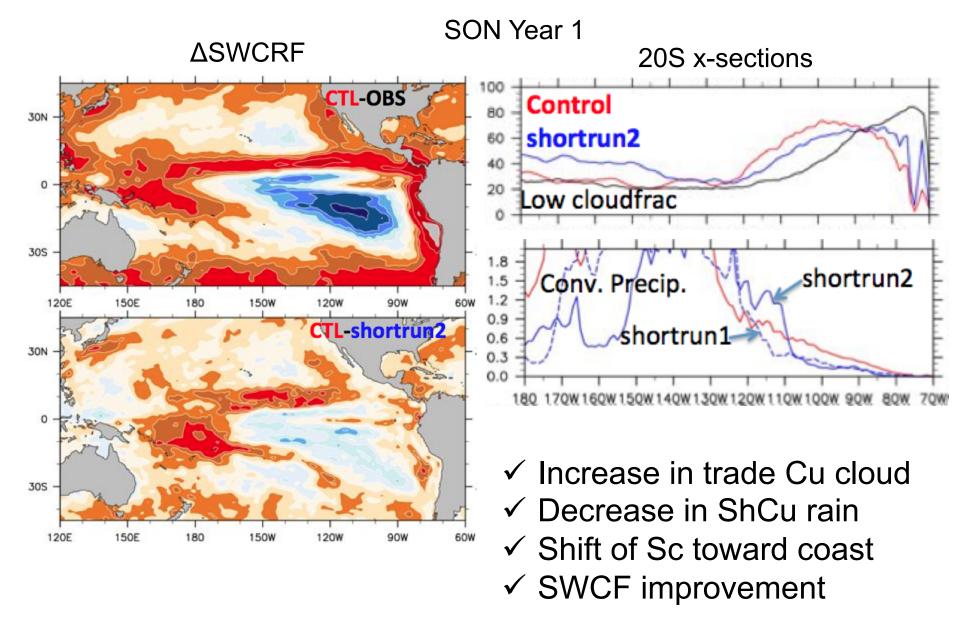
Testing in Single Column Models:

Versions of Climate Models

3D Climate/Weather Models:

Evaluation and Diagnostics with satellite observations

LES/CRM models provide unique information on small-scale statistics


# Single-Column Modeling with GFS (Fletcher et al.)

- GFS SCM developed by UW and NCEP with recent physics
- SCM has been adapted to several GCSS cases (Sc, shallow Cu, Sc-Cu transition) for which LES and observations exist
- SCM used at JPL to implement EDMF scheme in GFS

### LES/SCM study of BOMEX Cu case:

- Too much rain
- Cloud cover problematic
- Physics changes from LES: increase lateral entrainment 3x decrease precip efficiency 2x

## Sensitivity to Shallow Cu changes (shortrun2)



# Energy loss and TKE dissipation heating (Han et al.)

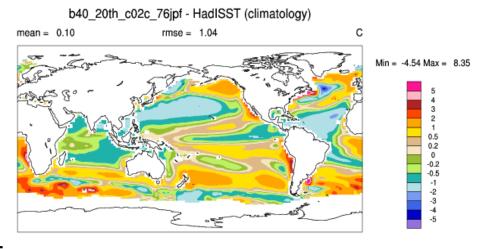
$$\varepsilon = -K_h \frac{g}{\theta_v} \frac{d\theta_v}{dz} + K_m \left| \frac{d\mathbf{u}}{dz} \right|^2$$
buoyancy production shear production

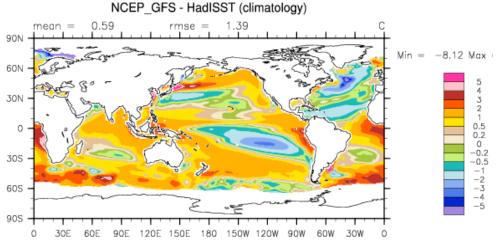
| EXP (total and low cloud fraction [first 4 month averaged]) | TOA<br>(W/m²) | SFC<br>(W/m²) | Difference<br>(W/m²) |
|-------------------------------------------------------------|---------------|---------------|----------------------|
| CTL (49.7%: 28.5%)                                          | 9.9           | 5.3           | 4.6                  |
| EXP3 (55.4%: 35.8%)                                         | 1.5           | 0.8           | 0.7                  |

EXP3: TKE dissipation heating + cloud changes

Atmospheric energy loss is now much smaller

## Summary


- 1. New global climate diagnostics for GFS:
- Many fields as good or better than CESM1 climate model
- Cloud rad forcing much too weak, biasing climate warm
- GFS energy leaks compensate this bias
- 2. GCSS single-column cases test GFS physics
- Shallow Cu entrain too little, precipitate too much
- 3. Short coupled runs
- Fixing ShCu issues improves global coupled simulation
- Atmos. energy leak fixed by adding dissipative heating.
- 4. EDMF implemented and evaluated in GFS SCM


# Comparison of NCAR CESM1 and NCEP GFS

| Model                        | NCAR CESM1                                                | NCEP GFS           |
|------------------------------|-----------------------------------------------------------|--------------------|
| Atmosphere                   | CAM5 (2x2.5, L30)                                         | GFS (T126 L64)     |
| Boundary Layer<br>Turbulence | Bretherton-Park (09) UW Moist Turbulence                  | Han and Pan (11)   |
| Shallow Convection           | Park-Bretherton (09) UW Shallow Convection                | Han and Pan (11)   |
| Deep Convection              | Zhang-McFarlane<br>Neale et al.(08)<br>Richter-Rasch (08) | Han and Pan (11)   |
| Cloud<br>Macrophysics        | Park-Bretherton-Rasch (10) UW Cloud Macrophysics          | Zhao and Carr (97) |
| Stratiform Microphysics      | Morrison and Gettelman (08)  Double Moment                | Zhao and Carr (97) |
| Radiation / Optics           | RRTMG lacono et al.(08) / Mitchell (08)                   | RRTM               |
| Aerosols                     | Modal Aerosol Model (MAM)<br>Liu & Ghan (2009)            | Climatology        |
| Dynamics                     | Finite Volume                                             | Spectral           |
| Ocean                        | POP2.2                                                    | MOM4               |
| Land                         | CLM4                                                      | NOAH               |
| Sea Ice                      | CICE                                                      | MOM4               |

### NCEP Model Diagnostics (Xiao, Sun, Park)

- NCAR CESM 1.0 (coupled version of CAM 5.0, 200-yr run)
- NCEP GFS (coupled to MOM ocean model, 50-yr)
- NCAR AMWG diagnostic package adapted to GFS output
- Both models skillfully reproduce global circulation patterns.
- GFS avoids double-ITCZ bias.

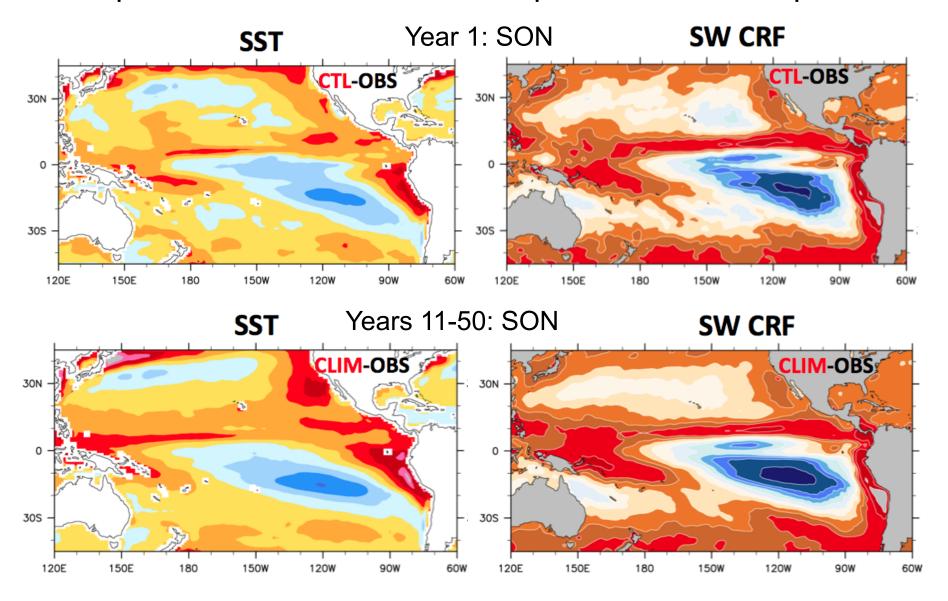




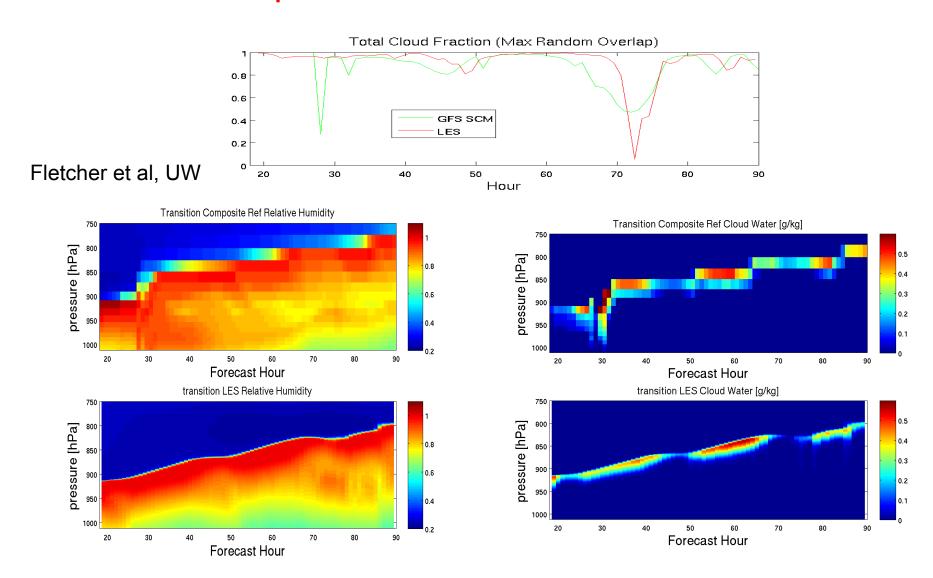
### 50 yr C-GFS vs. 100 yr CESM1 climo: AMWG metrics

| cor coef: Space-Time               | cam3_5_fv1.9x2.5 | b40_20th_c02c_76jpf | NCEP_GFS |  |
|------------------------------------|------------------|---------------------|----------|--|
| cor coor. Opaco Timo               | ANN              | ANN                 | ANN      |  |
| Sea Level Pressure (ERA40)         | 0.949            | 0.959               | 0.956    |  |
| SW Cloud Forcing (CERES2)          | 0.707            | 0.714               | 0.408    |  |
| LW Cloud Forcing (CERES2)          | 0.820            | 0.769               | 0.781    |  |
| Land Rainfall (30N-30S, GPCP)      | 0.785            | 0.811               | 0.751    |  |
| Ocean Rainfall (30N-30S, GPCP)     | 0.802            | 0.757               | 0.733    |  |
| Land 2-m Temperature (Willmott)    | 0.876            | 0.876               | 0.911    |  |
| Pacific Surface Stress (5N-5S,ERS) | 0.872            | 0.797               | 0.834    |  |
| Zonal Wind (300mb, ERA40)          | 0.967            | 0.960               | 0.957    |  |
| Relative Humidity (ERA40)          | 0.900            | 0.874               | 0.906    |  |
| Temperature (ERA40)                | 0.912            | 0.932               | 0.984    |  |

### C-GFS pattern correlations better than CESM1 for

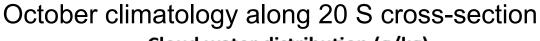

Pac surface stress, land surface temperature, 3D T/RH, but worse for

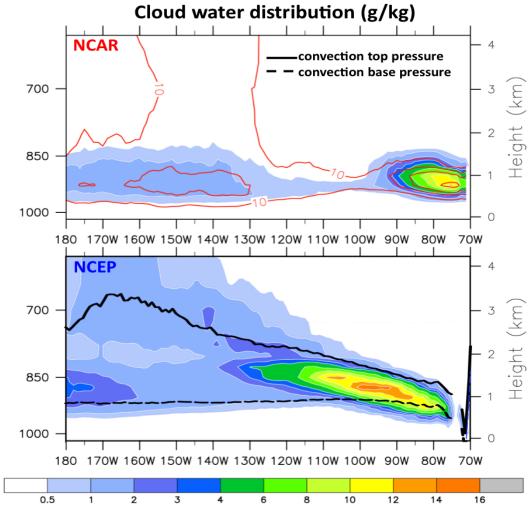
shortwave cloud forcing, rainfall.


Overall, C-GFS climatology is remarkably good for a weather-tuned model.

### 1 year coupled GFS sensitivity runs (Sun, Han, Xiao)

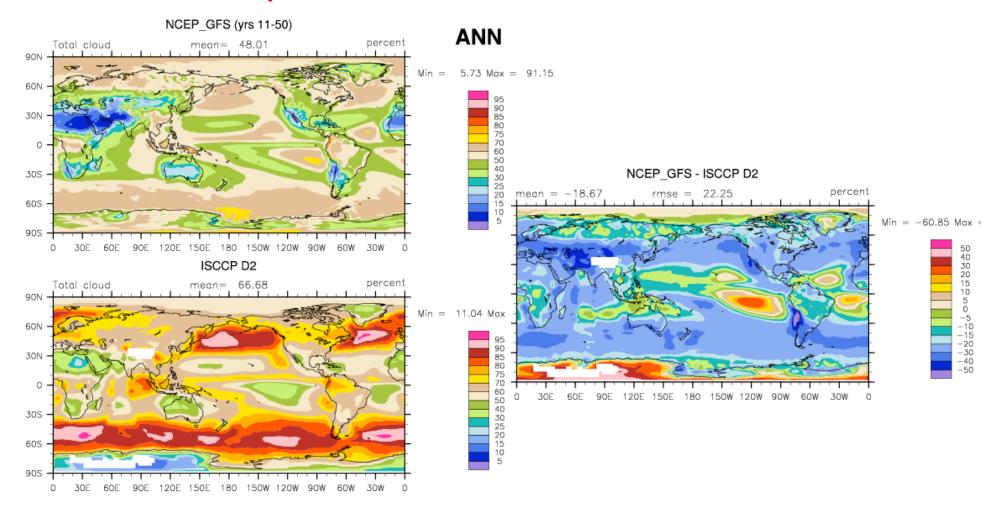
Tropical cloud/SST biases in coupled model develop fast





### Sc-to-Cu composite transition case with NCEP SCM

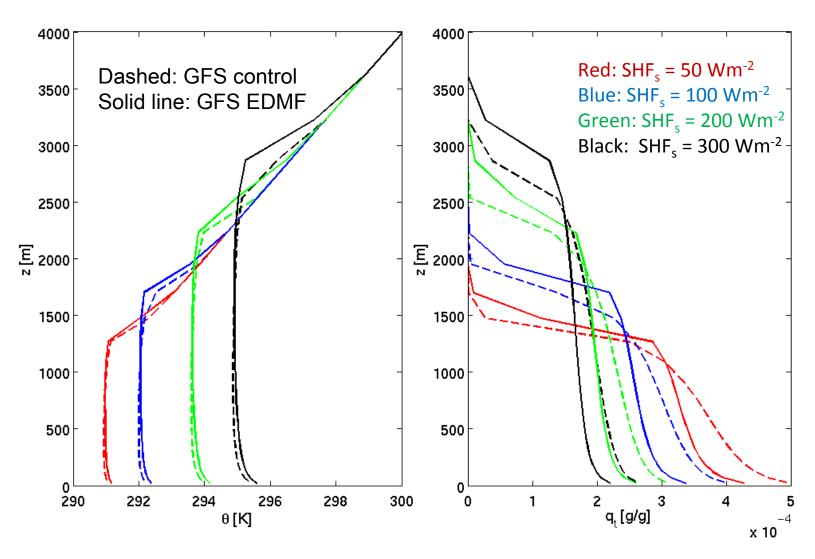


GFS SCM results for transition are not too bad


### NCEP/NCAR diagnostics of cloud transition






NCAR and NCEP results are significantly different

## Main culprit: Too little cloud cover in GFS



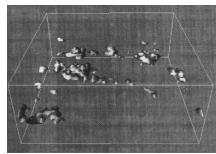
Cloud Parameterization? Microphysics? Vertical mixing?

# Implementation of EDMF in GFS SCM Dry convective boundary layer

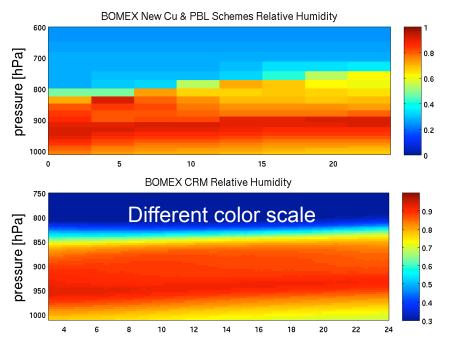


EDMF improves dry convective boundary layer in GFS

# Single-Column Modeling with GFS (Fletcher et al.)


- Single-column GFS existed (pre-2010 physics) but not outside NCEP, nor on intercomparison cases
- Technical issues:
  - Lack of GFS documentation
  - Code inflexible to changes in forcings, physics, outputs
  - Default outputs inadequate to diagnose parameterizations
- GFS SCM developed by UW and NCEP with recent physics
- SCM has been adapted to several GCSS cases (Sc, shallow Cu, Sc-Cu transition) for which LES and observations exist
- SCM used at JPL to implement EDMF scheme in GFS

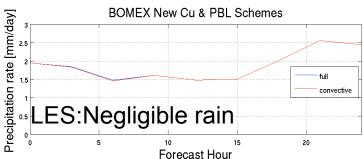
### **BOMEX** nonprecipitating trade Cu case


Siebesma et al. 2003



700




0.15





BOMEX New Cu & PBL Schemes Cloud Water [g/kg]

- Too much rain
- Cloud cover problematic
- Physics changes from LES: increase lateral entrainment 3x decrease precip efficiency 2x



### TKE dissipation heating (Han)

$$\varepsilon = -K_h \frac{g}{\theta_v} \frac{d\theta_v}{dz} + K_m \left| \frac{d\mathbf{u}}{dz} \right|^2$$
buoyancy production shear production

| 4 month coupled GFS runs                                                            | TOA<br>(W/m²) | SFC<br>(W/m²) | Difference<br>(W/m²) |
|-------------------------------------------------------------------------------------|---------------|---------------|----------------------|
| CTL                                                                                 | 16.2          | 9.6           | 6.6                  |
| EXP1: same as shortrun2 in Heng (dissipative heating only at the model first layer) | 7.9           | 5.1           | 2.8                  |
| EXP2: same EXP1 but w/o dissipative heating                                         | 8.2           | 2.3           | 5.9                  |
| EXP3: same as EXP1 but w/ dissipative heating over whole atmospheric layer          | 7.8           | 6.9           | 0.9                  |

...atmospheric energy loss is now much smaller